# WATER QUALITY ASSESSMENT: THE EFFECTS OF LAND USE AND LAND COVER IN URBAN AND AGRICULTURAL LAND

**Natural Resources and Environmental Sciences (NRES)** 

Kansas S S **5.2262(s) 2R8040** 0 e

S scecS)

### **Table of Contents**

Precision conservation, although related to the field of precision agriculture, has a broader scope

isolates habitats by destroying crucial corridors,



# Statistical Analysis

All subwatersheds were delineated using ArcGIS software. A tool was created that determines the geographic region contributing to a given point

t = 1.5618, df = 22.908, p-value = 0.1321 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
-0.3264524, 2.3362563
sample estimates:
mean of x mean of y
1.5882353, 0.5833333
Nitrogen levels were not statistically different.

#### 5. Turbidity

t = -1.4023, df = 23.11, p-value = 0.1741

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-26.82951, 5.14769

sample estimates:

mean of x mean of y

21.25000, 32.09091

Turbidity levels were not statistically different.

#### 6. E Td [ ) 4c T4t4ty

t = 1.7653, df = 27.764, p-value = 0.08851

Nutrients are more rich in certain areas due to different land uses that take place. An agricultural

water being present. The higher amounts of runoff created a higher sediment load, which contributed to the higher turbidity numbers.

Future research for this project should consist of more of a citizen science approach in urban

# References:

subwatersheds of the Mackinaw River, Illinois. Journal of Environmental Quality, 40(4), 1215-28.