[an error occurred while processing this directive] [1xbet online casino ]
[1xbet online casino ]
  1. K-State Home
  2. News Services
  3. November news releases
Print This Article

Source: Joseph 1xbet online casino 785-532-3062, jcraine@k-state.edu
News release prepared by: Stephanie Jacques, 785-532-0101, sjacques@k-state.edu

Monday, Nov. 16, 2009

K-STATE RESEARCHERS STUDYING LINK BETWEEN 1xbet online casino AND CATTLE NUTRITIONAL STRESS

MANHATTAN -- Kansas State University's Joseph Craine, research assistant professor in the Division of Biology, and KC Olson, associate professor in animal sciences and industry, have teamed up with some other scientists from across the United States to look into the possible effects of 1xbet online casino on cattle nutrition.

Comparing grasslands and pastureland in different regions in the U.S., the study, published in Global 1xbet online casino Biology, discusses data from more than 21,000 different fecal samples collected during a 14-year period and analyzed at the Texas A&M University Grazingland Animal Nutrition Lab for nutritional content.

&1xbet online casino ;Owing to the complex interactions among climate, plants, cattle grazing and land management practices, the impacts of climate change on cattle have been hard to predict,&1xbet online casino ; said Craine, principal investigator for the project.

The lab measured the amount of crude protein and digestible organic matter retained by cattle in the different regions. The pattern of forage quality observed across regions suggests that a warmer 1xbet online casino would limit protein availability to grazing animals, Craine said.

&1xbet online casino ;This study assumes nothing about patterns of future climate change; it's just a what if,&1xbet online casino ; Olson said. &1xbet online casino ;What if there was significant atmosphere enrichment of carbon dioxide? What would it likely do to plant phenology? If there is atmospheric carbon dioxide enrichment, the length of time between when a plant begins to grow and when it reaches physiological maturity may be condensed.&1xbet online casino ;

Currently, cattle obtain more than 80 percent of their energy from rangeland, pastureland and other sources of roughage. With projected scenarios of 1xbet online casino warming, plant protein concentrations will diminish in the future. If weight gain isn't to drop, ranchers are likely going to have to manage their herds differently or provide supplemental protein, Craine said.

Any future increases in precipitation would be unlikely to compensate for the declines in forage quality that accompany projected temperature increases. As a result, cattle are likely to experience greater nutritional stress in the future if these geographic patterns hold as a actual example of future climates, 1xbet online casino .

&1xbet online casino ;The trickle-down to the average person is essentially thinking ahead of time of what the consequences are going to be for the climate change scenarios that we are looking at and how ranchers are going to change management practices,&1xbet online casino ; Craine said.

&1xbet online casino ;In my opinion these are fully manageable changes,&1xbet online casino ; Olson said. &1xbet online casino ;They are small, and being prepared just in case it does happen will allow us to adapt our management to what will essentially be a shorter window of high-quality grazing.&1xbet online casino ;

Additional investigators on the project include Andrew Elmore at the 1xbet online casino of Maryland's Center for Environmental Science and Doug Tolleson from the School of Natural Resources at the 1xbet online casino of Arizona, along with the assistance of Texas A&M's Grazingland Animal Nutrition Lab.

1xbet online casino1xbet online casino 1xbet online casino 1xbet online casino
[1xbet online casino ]