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more than two years in any coterie (Hoogland 1995). Their breeding season lasts from 

February to April, w
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Cully, J.F. and E. S. Williams. 2001. Interspecific comparisons of sylvatic plague in 

prairie dogs. Journal of Mammalogy 82:
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portion of grassland biodiversity is preserved by the presence and activity of this species 

(Mills et al. 1993); however, black-tailed prairie dogs are also considered agricultural 
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prairie dog survival. Given these results, it is plausible that colonies along the eastern 
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west of the 100
th

 meridian, while the remaining 7 sites were to the east. Given low colony 

densities (< 2 colonies p1 45he 0( )] TJ
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inhibitors of gene flow among prairie dog colonies. The variables we selected, their 

hypothesized impact on gene flow, and the dataset(s) used to visualize these variables in 

ArcGIS are given in Table 2.3. While we considered investigating effects of temperature 

within our study area, we ultimately excluded this climatic variable because our sampling 

design did not adequately represent the north-south temperature gradient within our study 

area, given the large gap between our most northerly location and all other locations 

(Figure 2.1).  

We created IBR landscape input data by transforming our source datasets into 

rasterized resistance surfaces. For discrete landscape features, e.g., roads, we created 

categorical IBR models by assigning high resistance values to hypothesized barriers (R = 

100 ohms) within the raster and low resistance values to hypothesized corridors (R = 1 

ohms). All other cells within the raster were given an intermediate, constant value (R = 

50 ohms), which approximates the IBD model within cells whe ceT

BT

1 0d feature is absent. 

Additionally, for each m
BT

odel containing a singl1 0d feature, we creat1 0dd and tested its 
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 Genetic differentiation  

From our 19 microsatellite loci, allelic richness within our colonies ranged 

between 2.5 to 6.4 alleles, while our calculations of observed and expected 

heterozygosity revealed an excess of heterozygotes in ms
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in attempts to pinpoint the most likely mechanism(s) driving decreased movement in the 

east.  

 Landscape genetics 

From our single feature IBR models, none of the landscape models with 
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 Frequent movement among colonies west of the 100
th

 meridian 

Similar to previous studies of gene flow among prairie dog colonies, our results 

suggest that emigration and immigration events occur frequently among colonies, 

particularly in the western portion of our study area. The western portion is composed 

almost ent.2 Tf


1 0 0rp .026( )] shortgrass prairie, although mixed-grass p 0rp rairie becomes m ad 
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Colbert et al. 2012). Daley (1992) also suggested that, while geographically isolated 

colonies likely receive few migrants, those migrants may more easily integrate into 

existing social groups than migrants to large, densely populated colonies; however, 

further study is required to support that claim.  

A second possible explanation could be the existence of a lengthy time lag 

between the geographic isolation of a colony and 
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Harrison, R., R. Bogdanowicz, S. Hoffman, E. Yensen, and P. Sherman. 2003. Phylogeny 

and evolutionary history of the ground squirrels (Ro
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Legendre, P., and M. Fortin. 2010. Comparison of the Mantel test and alternative 
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(0.021) 
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Table 2.3: Landscape and climatic variables used in isolation-by-
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Table 2.4: Indices of genetic diversity and isolation for each colony from which we 
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7 Logan County      
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Indices are: N = number of genotyped individuals (averaged over all loci); NA 
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Figure 2.4: Haplotype network from Program Network, suggesting all sequenced 
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Figure 2
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Figure 2.6: Heatmap 



 61 

Figure 2.7: IBD model (A) and a decomposed pairwise regression of that model (B), 

demonstrating a possible interaction effect between geographic distance and the 

location of colony pairs relative to the 100
th

 meridian. 
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Chapter 3 - Little evidence of sex-bias or landscape influence 

on intercolonial dispersal within black
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 Results 
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relatedness was greater than female mean relatedness, although the difference was 
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 Absence of male-biased dispersal across scales  

Female relatives were 
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evidence that shrubland acts as a corridor to gene flow, possibly by providing prairie 
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colonies demonstrates (Chapter 2). Consequently, we suggest thoughtful, coordinated 

regulation of control efforts throughout 
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Lawson Handley, L. and N. Perrin. 2007. Advances in our understanding of mammalian 
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Table 3.1: Geographic location of each colony sampled with our four study sites. We 

provide the names of each colony and the n
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Table 3.3: Isolation-by-resistance (IBR) model selection and evaluation procedures. Of all tested landscape variables, 

only one IBR model achieved significant correlation and partial correlation with observed gene flow in our study areas. 

This model coded shrubland as a dispersal corridor among prairie dog colonies. 

Model  





 86 

Figure 3.2: Spatial genetic autocorrelogram depicting observed genetic 

autocorrelation (r ± standard error) among colonies within our study areas by a 

solid line. Dashed lines mark upper (U) and lower (L) bounds of the 95% confidence 

envelope. If observed autocorrelation within a particular distance class lies outside 
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Figure 3.4: Coefficient of genetic r
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Figure 3.5: Results from our linear model of isolation-by
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Chapter 4 - Landscape features predict sylvatic plague 

transmission among black-tailed prairie dog colonies 

Rachel M. Pigg and Jack F. Cully, Jr. 
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in the program Circuitscape (McRae 2006, McRae and Beier 2007, McRae et al. 2008). 
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coloni
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input into Circuitscape. Our categorical response variable was colony presence or 

absence in 2006, where an absence was assumed indicative of plague transmission. We 

limited our investigation to this 1-
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given a binomial response variable) to ���SHUIHFW�DFFXUDF\���0RGHOV�ZLWK�F�������DUH�

DFFHSWDEOH��ZKLOH�PRGHOV�ZLWK�F�����DUH�VWURQJO\�VXSSRUWHG��6RPHZKDW�VLPLODUO\��6RPHU¶V�

D quantifies the degree of association between out-of-bag predictions and our 

REVHUYDWLRQV��'HPDULV��������6RPHU¶V�' is interpreted as the proportion decrease in error 
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indicating that large colonies in Comanche had a high probability of plague-induced 
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diversity and evenness of infectious agents. By limiting our investigation to the initial 

year of plague epizootic events, we avoided the complexity inherent to advanced 

outbreaks and were able to create accurate and precise models of disease transmission 

among prairie dog colonies during the first year of the event. Our attempts to create 

predictive models of plague transmission in later years of the infection failed consistently 

(data not shown). In future studies, if the aim is to identify landscape features predictive 

of plague transmission throughout the epidemic, a finer time scale than the yearly step 
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2006, McRae and Beier 2007, McRae et al. 2008). Our results do agree with some 
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http://biostat.mc.vanderbilt.edu/s/Hmisc
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Figure 
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Figure 4.2: Dot plots ranking our predictor variables for Cimarron National Grassland (A) 
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Chapter 5 - 
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sensitive species, such as the lesser prairie chicken or tiger salamander, must also be 

considered to preserve species diversity within North American grasslands. 

Second, we stress that 
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