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Abstract

In the context of a randomized experiment, I identify treatment e�ect het-



insu�cient for identi�cation when we step out of the case of perfect compliance. Un-

der imperfect compliance, the average di�erence in outcomes between the treatment

and control groups becomes the intention-to-treat e�ect (ITT). The ITT is usually

not the primary parameter of interest. The ITT is not the e�ect of the treatment as

not everyone takes the treatment. Instead, the ITT is the e�ect of the assignment,





In Biostatistics, studies on these subgroup e�ects are called principal strati�cation

as formally de�ned in Frangakis and Rubin(2002). These studies rely on other as-

sumptions which may not be plausible for some problem setup. For example, their

identi�cation strategies rely on exclusion restrictions (Imbens and Angrist, 1994or

Angrist et al., 1996) or a parametric model (Hirano et al., 2000 and Imbens and

Rubin, 2015)







2 Parameter of Interest

2.1 General Idea

Consider a standard model of potential outcomes. LetT 2 f 0; 1g be the treat-

ment assignment, and letY be an observed outcome generated out of two potential



Although this ITT represents the average e�ect of the assignmentT, usually

the ITT is not the ultimate goal of the study. The parameter of interest is often

average e�ect of the treatment, not the average e�ect of assignment to treatment.

Let D be a binary variable representing the treatment take-up that the units choose



e�ect on the treated (ATT) as parameter shown below.

2.2 ATT as the Subgroup Mean E�ect under One-Sided

Non-Compliance

One-sided non-compliance is a randomized experiment where not all units assigned to

treatment group T = 1 take the treatment, i.e., haveD = 1, but the treatment is not

available for units assigned to the controlT = 0. For one-sided non-compliance, the

subgroup e�ect for T = 1; D = 1 is the average treatment e�ect on treated (ATT).

The application to the microcredit experiment ofCr�epon et al. (2015) is an example





generally invalid for D = 0 as

E[Y jT = 1; D = 0] � E[Y jT = 0; D = 0]

= E[Y10jT = 1; D = 0] � E[Y0jT = 0; D = 0]

= E[Y11 � Y0jT = 1; D = 0]
| {z }

a causal e�ect

+ E[Y0jT = 1; D = 0] � E[Y0jT = 0]
| {z



expression equals the ATT,E[Y11 � Y0jT = 1; D = 1].



random variablesYb and Y0 to be similar. First, let me introduce the concept of the

rankings.

De�nition 3.1 (Latent Rank Variables). Let W be a vector of baseline covariates.

A random variableUw � U[0; 1] indexed by eachW = w is called (conditional) latent

rank variable for a random variableY if

Y = QY jW (UW jW)

whereQY jW (ujw) = inf f y : FY jW (yjw) � ug.

Remark. Note that the existence of the latent ranking variableUw is not an assump-

tion, such a variable exists whetherY is �nitely supported or continuous.

We can always construct such a conditional latent variableUw as

Uw = FY jW = w(Y � ) + V � (FY jW = w(Y) � FY jW = w(Y � ))

whereV � U[0; 1] and V j= W. The existence of such a conditional latent variable can

be shown as an extension to the unconditional latent variable existence of Proposition

2.1 in





3.2 Identi�cation Result

The parameter of interest is the counterfactual distributionFY0 jT;D (yj1; d) and the

counterfactual mean computed from the distribution.

Theorem 3.1. If the assumptions2.1, 3.1, 3.2, and 3.3 hold, then

FY0 jW;T;D (yjw; 1; d) = FYbjW;T;D (QYbjW;T (



Figure 3.1: Graphical representation of the formula

For the simplicity, consider the case without covariatesW. As in the panel A, �rst

note that the events f Y0 � yg and f U0 � FY0 (y0)g



in terms of the conditional latent rank U U
U U



is the same sales value of the production output but measured before the experiment.



Let F (Ub;w) and F (U0;w) be the latent rankings whereF is the common distribu-

tion function of U + ~Ub;w and U + ~U0;w .

Proposition 3.2. Let F (Ub;w) and F (U0;w) be the latent rank variables forYb and

Y0 conditional on W





4 Estimation

4.1 Estimation for discrete post-treatment covariates D

For justifying the conditional rank similarity, it is desirable to condition on pre-

treatment covariatesW. The curse of dimensionality becomes a serious issue when

we estimate conditional quantities for each subsamplef T = 1; D = d; W



for eachy 2 Y k where Yk is the support of Y conditional on the subgroupk, and

dW is the dimension ofW. The subgroup can be eitherf T = 1g; f T = 1; D = dg or

f T = 0g.

Once these estimators are obtained, the conditional counterfactual distribution

is obtained as

F̂Y0 jW;T;D (yjw; 1; d) = F̂YbjW;T;D (



and Y1;d
b � W d are compact subsets ofR1+ dw



functions weakly converge jointly. Let

Ĝ1;d(y1;d
b ; w) =

p







whereGW CF
b;d (y; w) is a tight zero mean Gaussian process indexed by(y; w) such that



Theorem 4.4. Under assumptions





for some



Proof. Argument follows from Theorem 3.6.13 ofvan der Vaart and Wellner (1996)

as employed inChernozhukov et al.(2013), Theorem 5.1 and 5.2.




