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Abstract

In the context of a randomized experiment, | identify treatment e ect het-



insu cient for identi cation when we step out of the case of perfect compliance. Un-
der imperfect compliance, the average di erence in outcomes between the treatment
and control groups becomes the intention-to-treat e ect (ITT). The ITT is usually
not the primary parameter of interest. The ITT is not the e ect of the treatment as

not everyone takes the treatment. Instead, the ITT is the e ect of the assignment,






In Biostatistics, studies on these subgroup e ects are called principal strati cation
as formally de ned in Frangakis and Rubin(2002. These studies rely on other as-
sumptions which may not be plausible for some problem setup. For example, their
identi cation strategies rely on exclusion restrictions (mbens and Angrist 1994 or

Angrist et al., 1999 or a parametric model Hirano et al., 2000 and Imbens and

Rubin, 2015









2 Parameter of Interest

2.1 General Idea

Consider a standard model of potential outcomes. Lef 2 f 0;1g be the treat-

ment assignment, and letY be an observed outcome generated out of two potential



Although this ITT represents the average e ect of the assignment, usually
the ITT is not the ultimate goal of the study. The parameter of interest is often
average e ect of the treatment, not the average e ect of assignment to treatment.

Let D be a binary variable representing the treatment take-up that the units choose



e ect on the treated (ATT) as parameter shown below.

2.2 ATT as the Subgroup Mean E ect under One-Sided
Non-Compliance

One-sided non-compliance is a randomized experiment where not all units assigned to
treatment group T = 1 take the treatment, i.e., haveD = 1, but the treatment is not
available for units assigned to the controll = 0. For one-sided non-compliance, the
subgroup eect forT =1;D =1 is the average treatment e ect on treated (ATT).

The application to the microcredit experiment ofCepon et al. (2019 is an example






generally invalid forD =0 as

E[YjT=1;D=0] E[YjT=0:D=0]
=E[YiojT =1;D =0] E[YojT =0;D =0]

= F[Yn YojIZ= 1;D = Oi+ IE[YOjT =1:D ={§)] E[YoT = 0]

a causal e ect



expression equals the ATTE[Y1:  YoT =1;D =1].



random variablesY, and Y, to be similar. First, let me introduce the concept of the

rankings.

De nition 3.1 (Latent Rank Variables). Let W be a vector of baseline covariates.
A random variableU,, UJ[0; 1] indexed by eacW = w is called (conditional) latent

rank variable for a random variableY if

Y = Qyjw (UwjW)

where Qvjw (ujw) = inf fy : Fyjw (yjw) ug.

Remark. Note that the existence of the latent ranking variablg, is not an assump-
tion, such a variable exists whetheY is nitely supported or continuous.

We can always construct such a conditional latent variablé, as

Uy = FYjW=w(Y )+ \ (FYjW=W(Y) I:YjW:W(Y ))

whereV ~ U[0;1]andV u W. The existence of such a conditional latent variable can
be shown as an extension to the unconditional latent variable existence of Proposition

2.11in






3.2 ldenti cation Result

The parameter of interest is the counterfactual distributionFy,;r.p (yj1; d) and the

counterfactual mean computed from the distribution.

Theorem 3.1. If the assumptions2.1, 3.1, 3.2, and 3.3 hold, then

FYOjWJT;D (YJW, 1 d) = FijW;T;D (QijW;T(



Figure 3.1: Graphical representation of the formula

For the simplicity, consider the case without covariate$V. As in the panel A, rst

note that the eventsfY, ygandfU,  Fy,(Yo)g



in terms of the conditional latent rank U



is the same sales value of the production output but measured before the experiment.



Let F (Up.w) and F (U, ) be the latent rankings whereF is the common distribu-

tion function of U + Uy, and U + Ug.,.

Proposition 3.2. Let F(Upw) and F(Uy.,) be the latent rank variables foiy, and

Yy conditional on W






4 Estimation

4.1 Estimation for discrete post-treatment covariates D

For justifying the conditional rank similarity, it is desirable to condition on pre-
treatment covariatesW. The curse of dimensionality becomes a serious issue when

we estimate conditional quantities for each subsampfel =1;D = d; W



for eachy 2 Y* where YK is the support of Y conditional on the subgroupk, and
dW is the dimension ofW. The subgroup can be eithef T =1g;fT =1;D = dg or
fT=0g.

Once these estimators are obtained, the conditional counterfactual distribution

is obtained as

Frojwro (Yiw; 1;d) = Fyjwro (



and YS¢ W 4 are compact subsets dR'* %



functions weakly converge jointly. Let

1 p_
Gy, w) =









whereGY'<F (y; w) is a tight zero mean Gaussian process indexed (yyw) such that



Theorem 4.4. Under assumptions






for some



Proof. Argument follows from Theorem 3.6.13 ofan der Vaart and Wellner (1999

as employed inChernozhukov et al.(2013, Theorem 5.1 and 5.2. \






