distributions are more appropriate.8

3 Data Description

estimated shape parameter for GED distribution is around 1:48¹⁶, which is consistent

The Markov chain $\boldsymbol{\mathcal{S}_t}$

with the step length of 0.05. Meanwhile, expTS is the average of $\,$ ($\,$;

Timmermann (1992).20

Lunde and Nason (2011) proposed the alternative Model Con..dence Set (MCS), which

We run both tests with con..dence level at 0:25

DM tests using *QLI=ang*

period.

6 Conclusion

This paper oxered an extensive empirical investigation of the relative forecasting perfor-

we	opt	for	this	forecasting	scheme.	Nevertheless,	evaluating	the	relative	performance of

References

[1] Abosedra, S. S. and N. T. Laopodis (1997), "Stochastic behavior of crude oil prices:

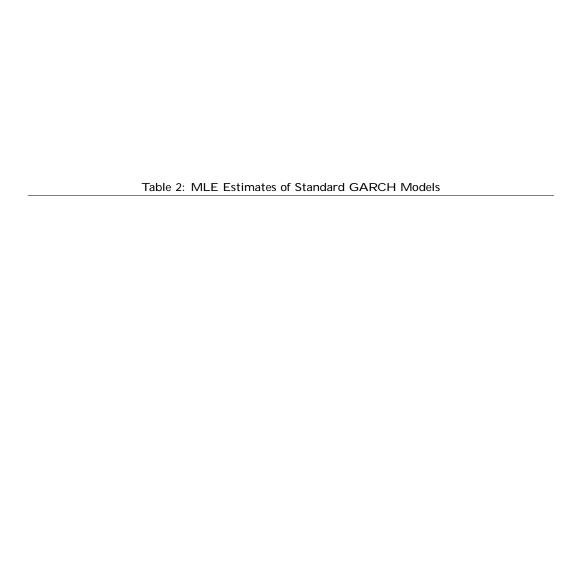


Table 4a: Out-of-sample evaluation of the one- and ...ve-step-ahead volatility forecasts

1-step-ahead volatility for a satisfies the same of th					
Model	MSE	Rank	MSE	Rank <i>QLIKE</i> Rank <i>R LOG</i>	

Table 5b: Diebold and Mariano test - MS-GARCH-t Benchmark

Panel A: One day Horizon					Par	nel B: Fiv	e day Hor	izon					
Model	MSE1	MSE2	QLIKE	R2LOG	MAD1	MAD2	Model	MSE1	MSE2	QLIKE	R2LOG	MAD1	MAD2
GARCH-N	-1.69	-0.93	-2.81**	-2.67**	-3.45**	-2.60**	GARCH-N	-3.18**	-1.45	-4.89**	-4.51**	-5.09**	-4.03**
GARCH-t													

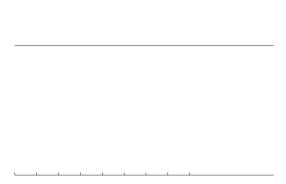


Figure 3: Volatility Forecast Comparisons for Select Models. The out-of-sample period extends from January 2, 2013 through Dec 31, 2014.

7.2.3 Test of Equal Predictive Ability **n** o_n **n** o_n Suppose $h_{i;t}$ and $h_{j;t}$ are two sequences of forecasts of the volatility t generated by two competing models, t and t. Consider the loss function t and t and t denotes the loss to be $L(h_t; t)$ if one makes the prediction