# Simple and Trustworthy Cluster-Robust GMM Inference

Jungbin Hwang

### 1 Introduction

### 2 Basic Setting and the First-step GMM Estimator

We want to estimate the  $d$  1

The F-test version of the Wald test statistic is given by

$$
\boldsymbol{F}(\uparrow_1):=(\boldsymbol{R}\uparrow_1 \quad \boldsymbol{r}
$$

distributions, respectively. As  $G=(G \quad p) > 1$  and  $\mathbf{F}^1_{p;G \quad p} > 1$ 

estimators  $\hat{C}_1$  and  $\hat{C}_2$  and  $\hat{C}_3$  where

$$
\wedge \left( \begin{array}{c} 0 \end{array} \right) = \frac{1}{G} \sum_{g=1}^{\infty}
$$

identi..cation restrictions is

 $J({}^{\wedge})$ 

and so

$$
\boldsymbol{J}(\uparrow_2) := \frac{\boldsymbol{G} \boldsymbol{q}}{\boldsymbol{q}} \frac{\boldsymbol{q} \boldsymbol{J}(\uparrow_2)}{\boldsymbol{G} \boldsymbol{q} \boldsymbol{J}(\uparrow_2)} \boldsymbol{f}^{\boldsymbol{q}} \boldsymbol{F}_{\boldsymbol{q};\boldsymbol{G}} \boldsymbol{q}.
$$

because we have

$$
G \t Bp \nBq \t Epp Epq \nEqq Eqq \nEqq Eqq \nBq \n= G4 Bp
$$

1, it is possible to show

 $\mathbf{p}$ <sub>—</sub>

Using

Similarly, the limiting distribution T

5 Asymptotic F and t tests

and that  $\beta_{p}$  is independent of  $S_{pp}^{-1}$ 

t-statistic:



We can obtain the same expression for the CU-GMM estimator  $\mathbf{P}_{\overline{N}(\hat{C}_{\text{CU-GMM}}-_{0})}$ .

In view of the representation in (32), the corrected variance estimator for the CU type estimators can be constructed as follows:

 $d$ r $^{adjadj}$ 

dependence in each cluster. When  $= 0$ , there is no clustered dependence and our model reduces to that of Windmeijer (2005) which considers a static panel data model with only one regressor.

The individual ..xed e¤ects and shocks in group  $g$  are generated by:

$$
\begin{array}{lll}\n\mathbf{g} & \text{i.i.d.}\n\mathbf{N}(0; \quad), \text{vec}(\mathbf{e}_{(g),t}) & \text{i.i.d.}\n\mathbf{N}(0; \quad_e), \\
\mathbf{u}_{(g),t} & = & t^{-1/2} \left( \begin{array}{c} g_f g_f, \dots, g_f g_f \end{array} \right) \mathbf{g} \\
\mathbf{g} & \text{i.i.d.}\n\mathbf{U}[0.5; 1.5], \text{ and } \mathbf{f}_{it}^g & \text{i.i.d.}\n\frac{1}{2} \quad 1\n\end{array}\n\tag{33}
$$

for  $i = 1; ...; L_N$  and  $t = 1; ...; T$  where  $t = 0.5 + 0.1(t - 1)$ . The DGP of individual shock  $u_{(g),t}$ 

uses the "plain" F-statistic  $F_2 := F \sim_{c_1}$ 

Figure 1: Emprical size of the ... rst-step and two-step tests when  $G = 50$ 

the empirical size of the …rst-step chi-square test (using  $(us(s)8311(611(s)8(i)69s)8(ttu)129(f)-110(t)8(h18s)$ 

ones in other scenarios, i.e., when the cost of employing CCE weighting matrix outweighs the bene...t

close to each other.

The uncentered two-step GMM estimate of the e¤ect of access to domestic market is  $d = d$ 2722:22. The reported standard error 400:5 is about 40% smaller than that of 2SLS. However, the plain two-step standard error estimate might be downward biased because the variation of the

#### References

[15] Dube, A., Lester, T. W., and Reich, M. (2010). "Minimum wage e¤ects across state borders:

Table 3: Empirical size of …rst-step and two-step tests based on the centered CCE when  $L_N$  = 50, number of clusters  $\boldsymbol{G}$  =  $50$ 

Figure 4: Size-adjusted power of ..rst-step (2SLS) and two-step tests with  $G = 50$  and  $L = 50$ :



Figure 5: Size-adjusted power of ..rst-step (2SLS) and two-step tests with  $G = 100$  and  $L = 50$ :

Figure 6: Empirical size of …rst-step and two-step tests based on the centered CCE when there is a heterogeneity in cluster size with the nominal size 5% (green line): Design I with  $\bm{G}$  = 50;  $\bm{q}$  = 8, and  $p = 3$ :



Table 9: Summary of the di¤erence between the conventional large- $\bm{G}$  asympototics and alternative ..xed- $G$  asympotics for the ..rst-step (2SLS ) and two-step GMM methods.

|                           | 2SLS             |                                               |
|---------------------------|------------------|-----------------------------------------------|
| <b>Variables</b>          |                  | Large- $G$ Asymptotics Fixed- $G$ Asymptotics |
| Domestic market $(A_i^d)$ | 2713.2(712.1)    | 2713.2 (716.8)                                |
|                           | [4109.9; 1316.4] | [4138.0; 1288.0]                              |
| International market (    |                  |                                               |

Table 11: Results for Emran and Hou (2013) data

### 10 Appendix: Application to Linear Dynamic Panel Model

We discusses how to implement our inference procedures in the context of a linear dynamic panel model:

$$
y_{it} = y_{it-1} + x
$$

where

$$
\mathbf{v} \mathbf{h} \mathbf{r}(\hat{h}) = \mathbf{N} \qquad \mathbf{w}^{\mathbf{0}} \mathbf{Z} \mathbf{W}_{n}^{-1} \mathbf{Z}^{\mathbf{0}} \quad \mathbf{w} \qquad \qquad \mathbf{w}^{\mathbf{0}} \mathbf{Z} \mathbf{W}_{n}^{-1} \mathbf{A}^{\mathbf{0}} (\hat{h}) \mathbf{W}_{n}^{-1} \mathbf{Z}^{\mathbf{0}} \quad \mathbf{w} \qquad \mathbf{w}^{\mathbf{0}} \mathbf{Z} \mathbf{W}_{n}^{-1} \mathbf{Z}^{\mathbf{0}} \quad \mathbf{w} \qquad \qquad \mathbf{w} \q
$$

Let Z

and

$$
\frac{\mathscr{Q}^{\wedge} c(\ )}{\mathscr{Q} j} = j^{\binom{\wedge}{1}} + \frac{\mathsf{O}(^{\wedge}_{1})}{j^{\binom{\wedge}{1}}}
$$

## Appendix of Proofs

Proof of Proposition 1. Part (a).

Therefore,



 $\equiv$ 

Let  $U$   $V^{\bullet}$ 

For the estimator  $\hat{ }$ 

with  $D_{12}$  and  $D_{22}$  given in (42). Therefore;

 $J({}^{\wedge}_{2}) = N g_{n}({}^{\wedge}_{2})^{\circ}$ 

of eigenvectors of  $(RVA^{-1})^0(RVA^{-1})$ : Let

$$
V = \begin{array}{cc} V_{d,d} & O \\ O & I_{q,q} \end{array}
$$

and de..ne

Then

 $W = \begin{pmatrix} p \\ W \\ I_q \end{pmatrix}$  **2**  $R^{(p+q)}$  *a*.

 $for$ 

where the convergence holds jointly for  $h = 1; ...; G$ : As a result,

$$
\wedge c(\wedge) \stackrel{\bullet}{\mathbf{f}} \frac{1}{G} \stackrel{\text{M}}{g}
$$

in  $(51)$  as

 $Ng$ 

For the CU-GMM estimator, we let  $\sqrt[3]{\binom{6}{\text{CU-GMM}}}$  be the *j* 

and so

for each  $\boldsymbol{j} = 1; ...; \boldsymbol{d}$ : For the term,  $e^{\lambda c}$ 

Also,  $\mathbf{E}_{2n} = o_p(1)$  and we have

 $\mathbf{dr}^{A}$