# Skills, Tasks, and Occupational Choice

Hugh Cassidy The University of Western Ontario

#### JOB MARKET PAPER

November 13, 2012

Abstract

of this occurring is denoted with  $\cdot$ . If a worker is not exogenously put into unemployment, he chooses either employment or unemployment. Given the choice of employment, the worker chooses the occupation-level in which to work. Denote occupation choice as  $j \ge J$ , where J is the numb(t,)-

The law of motion for skills is:

$$s_{i;t+1}^{k} = s_{it}^{k} + R^{k} \frac{k}{j!} \quad {}^{k}; \ k \ 2 \ fc; \ mg$$
(2)

where  $R^k$  is a scalar which determines the impact of task usage of skill k on the growth of

Lastly, there is a random wage component,  $\therefore$  This stochastic variable is a J = L + 1 vector with a value for each occupation-level and the non-employment state. It a ects the worker's wage in the I andworker'saTd [(J)](the)-26384 ander's

bene t is relatively high, due to the e ect such a decision would have on their continuation value.

## 3 Data

To investigate the validity of this occupational aggregation, I perform two sets of regressions using the GQCS data on task usage. The rst regression controls for level and

and conditional on their education level. Next, given their education level, I assign each worker a labor market entry age using the fourth random number. Again, this assignment is done such that the distribution of labor market entry ages resembles the distribution in the observed data.<sup>34</sup> Given these values, I can then simulate each worker's labor market history.

by their initial skills and the occupation-level prices. Since some workers might enter the sample much later than labor market entry, I restrict my sample to those whose rst year employed is observed before age 25. Speci cally, I use the coe cients from a Mincerian wage regression, with initial earnings as the dependent variable:

$$W_{i;1} = \frac{1}{0} + \frac{1}{1} \quad \mathbf{1} f e duc_i = COLg + \frac{1}{2} \quad \mathbf{1} f j = WCg + \frac{1}{3} \quad \mathbf{1} f l = 2g + u_{lt}^1 \tag{7}$$

where *educ*<sub>i</sub> 2 *fHS*; COL

adds 18 moments to the auxiliary model.

#### 4.2.3 Moments: Unemployment-Related Moments

Unemployment-related parameters are estimated using three separate regressions. First, I

and undur<sub>it</sub>

The occupational human capital returns are both positive and economically signi cant. An important di erence between occupation-speci c returns,  $_1$  and  $_2$ 

mobility and the persistence of unemployment.

There is the potential that these results are driven in part by the aggregation of employed states to a relatively small number. Future work will address this concern by expanding the

| Table 1: Summary Statistics, Estimation Sample |           |           |           |  |  |
|------------------------------------------------|-----------|-----------|-----------|--|--|
|                                                | All       | Level 1   | Level 2   |  |  |
|                                                | Mean/s.d. | Mean/s.d. | Mean/s.d. |  |  |
| Demographics                                   |           |           |           |  |  |
| HS                                             | 0.732     | 0.872     | 0.363     |  |  |
|                                                | (0.443)   | (0.334)   | (0.481)   |  |  |
| COL                                            | 0.268     | 0.128     | 0.637     |  |  |
|                                                | (0.443)   | (0.334)   | (0.481)   |  |  |
| Labour Market                                  |           |           |           |  |  |
| Age                                            | 38.943    | 38.011    | 41.399    |  |  |
|                                                | (9.087)   | (9.381)   | (7.747)   |  |  |
| Tenure                                         | 10.093    | 9.266     | 12.269    |  |  |
|                                                | (9.262)   | (9.110)   | (9.305)   |  |  |
| Experience                                     | 16.561    | 16.394    | 17.002    |  |  |
|                                                | (9.711)   | (9.987)   | (8.927)   |  |  |
| Net Labour Income                              | 1962.290  | 1605.876  | 2900.859  |  |  |

NBlue-Collar-482770.651

0.3656-2394(0.1270]TJ 103.386 -13.549 Td [((0.

|           |                 |              | 0             |
|-----------|-----------------|--------------|---------------|
|           | All<br>Mean/s d | Blue-Collar  | White-Collar  |
|           | Wicari/ 3.u.    | Wicari/ 3.u. | TVICUIT/ 3.U. |
| Cognitive | 0.580           | 0.273        | 0.927         |
|           | 0.494           | 0.445        | 0.260         |
| Research  | 0.153           | 0.076        | 0.239         |
|           | 0.360           | 0.265        | 0.426         |
| Plan      | 0.114           | 0.053        | 0.183         |
|           | 0.318           | 0.225        | 0.387         |
| Law       | 0.147           | 0.024        | 0.286         |
|           | 0.354           | 0.152        | 0.452         |
| Calculate | 0.163           | 0.031        | 0.311         |
|           | 0.369           | 0.173        | 0.463         |
| IT        | 0.128           | 0.022        | 0.248         |
|           | 0.334           | 0.146        | 0.432         |
| Cognitive |                 |              |               |

Table 2: Summary Statistics, Task Usage

| Table 4. Task Usayes |                  |                  |                    |                     |
|----------------------|------------------|------------------|--------------------|---------------------|
|                      | Cognitive        | Cognitive        | e Manual           | Manual              |
| White-Collar         | 0.461<br>(72.26) | 0.276<br>(34.79) | -0.418<br>(-65.60) | -0.189<br>(-25.03)  |
| 2.Level              | 0.184<br>(37.58) | 0.176<br>(33.38) | -0.109<br>(-22.33) | -0.0514<br>(-10.26) |
| Constant             | 0.198            | 0.229            | 1.025              | 0.9471TJ.           |

Table 4: Task Usages

| Table 6: Parameter Estimates                                                                                                    |                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Parameters                                                                                                                      | Values         |  |  |  |
| Skill Growth: <i>R<sup>c</sup></i> , <i>R<sup>m</sup></i><br>Skill Growth (School): <i>R<sup>c</sup><sub>e</sub></i> , <i>R</i> | 0.0731, 0.0537 |  |  |  |



Figure 2: Wage Level: By Occupation









Figure 4: Unemployment Composition and Transition

#### Figure 5: Level Composition



Appendix: Hierarchical Level Assignment

### References

Acemoglu, D. and D. Autor (2011): \Chapter 12 - Skills, Tasks and Technologies: Implications for Employment and Earnings," in *HANDBOOK OF LABOR ECONOMICS*, *VOL 4B* 

- Guvenen, F. and A. a. Smith (2010): \Inferring Labor Income Risk from Economic Choices: An Indirect Inference Approach," *Working Paper*.
- Ingram, B. and G. Neumann (2006): \The returns to skill," *Labour Economics*, 13, 35{59.

Kambourov, G. and I. Manovskii (2009): \Occupational Speci city of Human Capital," International Economic Review, 50, 63{115.

Keane, M. and A091 Tf a. Smith