Evidence for and Characterization of Ca² Binding to the Catalytic Region of *Arabidopsis thaliana* Phospholiparnss7T1

technique. PLD and PLD cat demonstrated a marked ability to bind ${\rm Ca^2}$ in the presence of phosphatidylserine (Fig. 1*C*) but not in its absence (data not shown). To obtain quantitative

In contrast, PIP_2 binding by PLD increased with Ca^2 levels up to 100 $\,^{\,}$ M concentrations of the cation (Fig. 6*B*). Further increases in Ca^2 concentration sharply diminished the amount of PIP_2

has a similar but greater effect on PIP_2 binding to the whole enzyme (Fig. 6*B*), with the maximal value being attained at about 100 $\,$ M Ca^2 , a pattern resembling the Ca^2 -dependence of PLD $\,$ activity (Fig. 2). Millimolar level Ca^2

(38), temperature stress (39), and in response to a plant hormone (40). Both ${\rm Ca}^2$ and ${\rm PIP}_2$ function as cellular messengers in various cellular processes, and characterization of their direct interaction with PLD thus provides insights into the $\it in vivo$ activation and function of Ca 2 -dependent PLDs.

REFERENCES

- Heller, M. (1978) Adv. Lipid Res. 16, 267–326
 Wang, X. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 211–231